Funciones predefinidas y operaciones Geogebra

Son utiles los números, coordenadas o ecuaciones si escogemos la barra de entrada Los operadores x, y, z se pueden usar para obtener los coeficientes correspondientes de una línea.  Los operadores lógicos y las funciones se listan en el artículo destinado a Valores Lógicos o Booleanos. Las funciones predefinidas deben ingresarse usando paréntesis y sin dejar espacio entre el nombre de la función y el paréntesis.

ARCOSENOS y FUNCIONES

Operación / Función Utilizar
ℯ (Número e) Alt + e
ί (Unidad imaginaria) Alt + i
π Alt + p o pi
° (Símbolo de grados sexagesimales) Alt + o o deg
Adición +
Sustracción
Multiplicación * o barra espaciadora
Producto escalar * o barra espaciadora
Producto vectorial (ver Puntos y Vectores)
División /
Exponenciación ^ o supraíndice (x^2 o x2)
Factorial !
Paréntesis ( )
abscisa x x( )
ordenada y y( )
coordenada z z( )
Argumento (funciona también en puntos y vectores 3D) arg( )
Conjugado conjugate( )
Parte real real( )
Parte imaginaria imaginary( )
Valor absoluto abs( )
Ángulo de altitud (para puntos/vectores 3D) alt( )
Signo sgn( ) o sign()
Máximo entero menor o igual que floor( )
Mínimo entero mayor o igual que ceil( )
Redondeo round(x) o round(x, y)
Raíz cuadrada sqrt( )
Raíz cúbica cbrt( )
Raíz n-ésima de x nroot(x, n)
Número aleatorio entre 0 y 1 random( )
Función exponencial exp( ) o ℯx
Logaritmo (natural, en base e) ln( ) o log( )
Logaritmo en base 2 ld( )
Logaritmo en base 10 lg( )
Logaritmo de x en base b log(b, x )
Coseno cos( )
Seno sin( )
Tangente tan( )
Secante sec()
Cosecante cosec()
Cotangente cot() o cotan()
Arcocoseno (respuesta en radianes) acos( ) o arccos( )
Arcocoseno (respuesta en grados) acosd( )
Arcoseno (respuesta en radianes) asin( ) o arcsin( )
Arcoseno (respuesta en grados) asind( )
Arcotangente (respuesta en radianes, entre -π/2 y π/2) atan( ) o arctan( )
Arcotangente (respuesta en grados, entre -90° y 90°) atand( )
Arcotangente (respuesta en radianes, entre -π y π) atan2(y, x) o arcTan2(y, x)
Arcotangente (respuesta en grados, entre -180° y 180°) atan2d(y, x)
Coseno hiperbólico cosh( )
Seno hiperbólico sinh( )
Tangente hiperbólico tanh( )
Secante hiperbólica sech( )
Cosecante hiperbólica cosech( )
Cotangente hiperbólica coth( ) o cotanh()
Arcocoseno hiperbólico acosh( ) o arccosh( )
Arcoseno hiperbólico asinh( ) o arcsinh( )
Arcotangente hiperbólica atanh( ) o arctanh( )
Función beta Β(a, b) beta(a, b)
Función beta incompleta Β(x;a, b) beta(a, b, x)
Función beta incompleta regularizada I(x; a, b) betaRegularized(a, b, x)
Función Gamma Γ(x) gamma( x)
(Lower) Función gamma incompleta γ(a, x) gamma(a, x)
(Lower) Función gamma incompleta regularizada P(a,x) = γ(a, x) / Γ(a) gammaRegularized(a, x)
Función error de Gauss erf(x)
Función digamma psi(x)
La función poligamma es la derivada (m+1)-ésima del logaritmo natural de la función gamma, gamma(x) (m=0,1) polygamma(m, x)
Función Integral senoidal sinIntegral(x)
Función integral cosenoidal cosIntegral(x)
Función integral exponencial expIntegral(x)
Función Riemann-Zeta ζ(x) zeta(x)
Función W de Lambert LambertW(x, branch) LambertW(x, 0), LambertW(x, -1)